Chapter 6 MOSFET

The MOSFET (MOS Field-Effect Transistor) is the building block of Gb memory chips, GHz microprocessors, analog, and RF circuits.

Match the following MOSFET characteristics with their applications:

- small size
- high speed
- low power
- high gain

6.1 Introduction to the MOSFET

Basic MOSFET structure and IV characteristics

Early Patents on the Field-Effect Transistor

Jan. 28, 1930.

J. E. LILIENFELD

1,745,175

METHOD AND APPARATUS FOR CONTROLLING ELECTRIC CURRENTS

Filed Oct. 8, 1926

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-4

6.2 MOSFETs Technology Polysilicon gate and 1.2nm SiO₂

•1.2 nm SiO₂ used in production. Leakage current through the oxide limits further thickness reduction.

Universal Surface Mobilities

•Surface roughness scattering is stronger (mobility is lower) at higher V_g , higher V_t , and thinner T_{oxe} .

Slide 6-12

EXAMPLE: What is the surface mobility at $V_{gs}=1$ V in an N-channel MOSFET with $V_t=0.3$ V and $T_{oxe}=2$ nm?

Solution: $(V_{gs} + V_t + 0.2) / 6T_{oxe}$ $= 1.5 \text{ V} / 12 \times 10^{-7} \text{ cm}$ = 1.25 MV/cm

1 MV is a megavolt (10⁶ V). From the mobility figure, μ_{ns} =190 cm2/Vs, which is several times smaller than the bulk mobility.

6.3.2 GaAs MESFET

MESFET IV characteristics are similar to MOSFET's but does not require a gate oxide.

Question: What is the advantage of GaAs FET over Si FET?

Terms: *depletion-mode transistor*, *enhancement-mode transistor*

•The layer of electrons is called **2D-electron-gas**, the equivalent of the inversion or accumulation layer of a MOSFET.

MOSFET V_t and the Body Effect

• Two capacitors => two charge components

$$C_{dep} = \frac{\mathcal{E}_s}{W_{d\max}}$$

MOSFET V_t and the Body Effect

• **Body effect**: V_t is a function of V_{sb} . When the source-body junction is reverse-biased, $|V_t|$ increases.

• Body effect coefficient:

$$V_t = V_{t0} + \alpha V_{sb}$$

$$\alpha = C_{dep} / C_{oxe}$$
$$= 3T_{oxe} / W_{dep}$$

Body effect slows down circuits? How can it be reduced?

- W_{dep} does not vary with V_{sb} .
- Retrograde doping is popular because it reduces off-state leakage and allows higher surface mobility.

Uniform Body Doping

When the source/body junction is reverse-biased, there are two quasi-Fermi levels (E_{fn} and E_{fp}) which are separated by qV_{sb} . An NMOSFET reaches threshold of inversion when E_c is close to E_{fn} , not E_{fp} . This requires the band-bending to be $2\phi_B + V_{sb}$, not $2\phi_B$.

$$V_{t} = V_{t0} + \frac{\sqrt{qN_{a} 2\varepsilon_{s}}}{C_{oxe}} (\sqrt{2\phi_{B} + V_{sb}} - \sqrt{2\phi_{B}})$$
$$\equiv V_{t0} + \gamma (\sqrt{2\phi_{B} + V_{sb}} - \sqrt{2\phi_{B}})$$

 γ is the **body-effect parameter**.

V_{dsat}: Drain Saturation Voltage

Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 6-25

Saturation Current and Transconductance

• linear region, saturation region

$$I_{dsat} = \frac{W}{2mL} C_{oxe} \mu_{ns} (V_{gs} - V_t)^2$$

• transconductance: $g_m = dI_{ds}/dV_{gs}$

$$g_{msat} = \frac{W}{mL} C_{oxe} \mu_{ns} (V_{gs} - V_t)$$

Slide 6-26

6.7.3 Power Consumption

$$P_{dynamic} = V_{dd} \times average \ current = k \ CV_{dd}^2 f$$

$$P_{static} = V_{dd} I_{off}$$

$$P = P_{dynamic} + P_{static}$$

6.8 Velocity Saturation

- $\mathbf{E} >> \mathbf{E}_{sat}$: $v = \mu_{ns} \mathbf{E}_{sat}$
- Velocity saturation has large and deleterious effect on the *I*_{on} of MOSFETS

MOSFET IV Model with Velocity Saturation *6.9*

$$I_{ds} = WQ_{inv}V$$

$$I_{ds} = WC_{oxe}(V_{gs} - mV_{cs} - V_t) \frac{\mu_{ns}dV_{cs}/dx}{1 + \frac{dV_{cs}}{dx}/E_{sat}}$$

$$\int_0^L I_{ds}dx = \int_0^{V_{ds}} [WC_{oxe}\mu_{ns}(V_{gs} - mV_{cs} - V_t) - I_{ds}/E_{sat}]dV_{cs}$$

$$I_{ds}L = WC_{oxe}\mu_{ns}(V_{gs} - V_t - \frac{m}{2}V_{ds})V_{ds} - I_{ds}V_{ds}/E_{sat}$$
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 6-33

Slide 6-33

6.9 MOSFET IV Model with Velocity Saturation

Solving
$$\frac{dI_{ds}}{dV_{ds}} = 0$$
,

$$V_{dsat} = \frac{2(V_{gs} - V_t) / m}{1 + \sqrt{1 + 2(V_{gs} - V_t) / m E_{sat} L}}$$

A simpler and more accurate V_{dsat} is:

$$\frac{1}{V_{dsat}} = \frac{m}{V_{gs} - V_t} + \frac{1}{\mathbf{E}_{sat}L}$$

$$\mathbf{E}_{sat} \equiv \frac{2v_{sat}}{\mu_{ns}}$$

Slide 6-35

EXAMPLE: Drain Saturation Voltage

Question: At $V_{gs} = 1.8$ V, what is the V_{dsat} of an NFET with $T_{oxe} = 3$ nm, $V_t = 0.25$ V, and $W_{dmax} = 45$ nm for (a) L = 10 μ m, (b) L = 1 um, (c) L = 0.1 μ m, and (d) L = 0.05 μ m?

Solution: From V_{gs} , V_t , and T_{oxe} , μ_{ns} is 200 cm²V⁻¹s⁻¹.

$$E_{sat} = 2v_{sat}/\mu_{ns} = 8 \times 10^4 \text{ V/cm}$$

 $m = 1 + 3T_{oxe}/W_{dmax} = 1.2$

$$V_{dsat} = \left(\frac{m}{V_{gs} - V_t} + \frac{1}{\mathbf{E}_{sat}L}\right)^{-1}$$

Slide 6-36

EXAMPLE: Drain Saturation Voltage

$$V_{dsat} = \left(\frac{m}{V_{gs} - V_t} + \frac{1}{\mathbf{E}_{sat}L}\right)^{-1}$$

(a)
$$L = 10 \ \mu m$$
, $V_{dsat} = (1/1.3V + 1/80V)^{-1} = 1.3 V$
(b) $L = 1 \ \mu m$, $V_{dsat} = (1/1.3V + 1/8V)^{-1} = 1.1 V$
(c) $L = 0.1 \ \mu m$, $V_{dsat} = (1/1.3V + 1/.8V)^{-1} = 0.5 V$
(d) $L = 0.05 \ \mu m$, $V_{dsat} = (1/1.3V + 1/.4V)^{-1} = 0.3 V$

I_{dsat} with Velocity Saturation

Substituting V_{dsat} for V_{ds} in I_{ds} equation gives:

Very short channel case: E

 $\mathbf{E}_{sat} L \ll V_{gs} - V_t$

$$I_{dsat} = W_{V_{sat}}C_{oxe}(V_{gs} - V_t - m\mathbf{E}_{sat}L)$$

$$I_{dsat} = W_{V_{sat}} C_{oxe} (V_{gs} - V_t)$$

• I_{dsat} is proportional to $V_{gs} - V_t$ rather than $(V_{gs} - V_t)^2$, not as sensitive to L as 1/L.

PMOS and NMOS IV Characteristics

The PMOS IV is qualitatively similar to the NMOS IV, but the current is about half as large. How can we design a CMOS inverter so that its voltage transfer curve is symmetric?

6.9.1 Velocity Saturation vs. Pinch-Off

Current saturation : the carrier velocity reaches V_{sat} at the drain.

Instead of the **pinch-off region**, there is a **velocity saturation region** next to the drain where Q_{inv} is a constant (I_{dsat}/W_{vsat}).

6.10 Parasitic Source-Drain Resistance

• If
$$I_{dsat0} \propto V_g - V_t$$
, $I_{dsat} = \frac{I_{dsat0}}{1 + \frac{I_{dsat0}R_s}{(V_{gs} - V_t)}}$

• I_{dsat} can be reduced by about 15% in a 0.1µm MOSFET. Effect is greater in shorter MOSFETs.

•
$$V_{dsat} = V_{dsat0} + I_{dsat}(R_s + R_d)$$

After the spacer is formed, a Ti or Mo film is deposited. Annealing causes the silicide to be formed over the source, drain, and gate. Unreacted metal (over the spacer) is removed by wet etching.

Question:

- What is the purpose of siliciding the source/drain/gate?
- What is self-aligned to what?

Definitions of Channel Length

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-44

6.12 Velocity Overshoot

- Velocity saturation should not occur in very short MOSFETs.
- This velocity overshoot could lift the limit on Ids .
- *But*...

6.12 Source Velocity Limit

• Carrier velocity is limited by the thermal velocity with which they enter the channel from the source.

•
$$I_{dsat} = WBv_{thx}Q_{inv}$$

= $WBv_{thx}C_{oxe}(V_{gs} - V_t)$

•Similar to

$$I_{dsat} = W_{V_{sat}}C_{oxe}(V_{gs} - V_t)$$

6.13 Output Conductance

- I_{dsat} does NOT saturate in the saturation region, especially in short channel devices!
- The slope of the I_{ds} - V_{ds} curve in the saturation region is called the **output conductance** (g_{ds}),

Example of an Amplifier

• The transistor operates in the saturation region. A *small signal* input, v_{in}, is applied.

$$i_{ds} = g_{msat} \cdot v_{gs} + g_{ds} \cdot v_{ds}$$
$$= g_{msat} \cdot v_{in} + g_{ds} \cdot v_{out}$$
$$i_{ds} = -v_{out} / R \cdot$$
$$\checkmark \quad v_{out} = \frac{-g_{msat}}{(g_{ds} + 1/R)} \times v_{in}$$

• The voltage gain is $g_{msat}/(g_{ds} + 1/R)$.

- A smaller g_{ds} is desirable for large voltage gain.
- Maximum available gain (or intrinsic voltage gain) is g_{msat}/g_{ds}

6.14 High-Frequency Performance

High-frequency performance is limited by input R and/or C.

Cutoff frequency (\mathbf{f}_{T}) : Frequency at which the output current becomes equal to the input current.

Maximum oscillation frequency (f_{max}) : Frequency at which the power gain drops to unity

Intrinsic input resistance

Gate-Electrode Resistance

Multi-finger layout greatly reduces the gate electrode resistance

$$R_{g-electrode} = \rho W / 12T_g L_g N_f^{2}$$

- ρ : resistivity of gate material, W_f : width of each gate finger,
- T_g : gate thickness,
- L_g : gate length,
- N_{f} : number of fingers.

Intrinsic Input Resistance

$$R_{ii} = \kappa \int dR_{ch} = \kappa \frac{V_{ds}}{I_{ds}}$$

The gate capacitor current flows through R_{ch} to the source and ground.

6.15 MOSFET Noises

Noise : All that corrupts the signal

External noise:

- Inductive and capacitive interferences and cross talks created by wiring
- Needs to be controlled with shielding and circuit layout carefully

Fundamental noise:

- Noise inherent to the electronic devices.
- Due to the random behaviors of the electric carriers inside the device

6.15.1 Thermal Noise of a Resistor

 $v_O(t)$

S(f)

White noise

Thermal noise: caused by random thermal motion of the charge carriers

S : noise power density spectrum

6.15.3 MOSFET Flicker Noise

Charge trapping and releasing by a single oxide trap generate Random Telegraph Noise

6.15.4 Signal to Noise Ratio, Noise Factor, Noise Figure

SNR: Signal power <u>i</u> noise power.

Decibel or dB:10 times the base-10 logarithm of the noise power. $10 \times \log \frac{S}{N}$

Noise factor: The ratio of the input SNR and output SNR. $F = \frac{S_i / N_i}{S_0 / N_0}$

6.16 Memory Devices

	Keep data without power?	Cell size and cost/bit	Rewrite cycles	Write- one- byte speed	Compatible with basic CMOS fabrication	Main applications
SRAM	No	Large	Unlimited	Fastest	Totally	Embedded in logic chips
DRAM	No	Small	Unlimited	Fast	Needs modification	Stand-alone main memory
Flash memory (NVM)	Yes	Smallest	Limited	Slow	Needs extensive modification	Nonvolatile data and code storage

Slide 6-58

6.16.1 SRAM

>Fastest among all memories.
>Totally CMOS compatible.
>Cost per bit is the highest-- uses 6 transistors to store one bit of data.

6.16.2 DRAM

•DRAM capacitor can only hold the data (charge) for a limited time because of leakage current.

•Needs refresh.

•Needs ~10fF C in a small and shrinking area -- for refresh time and error rate.

Slide 6-61

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-62

Phase Change Memory

Alloy of Ge, Sb, Te has high resistivity in amorphous phase and low resistivity in polycrystalline phase.

3D (Multi-layer) Memory

- Epitaxy from seed windows can produce Si layers.
- Ideally memory element is simple and does not need single-crystalline material.

Resistive Memory (RRAM)

-- Organic, inorganic, metallic.. material-- Future extension to 3-D

• propagation delay

• Power Consumption

$$P = kCV_{dd}^2 f + V_{dd}I_{off}$$

• body effect

 $V_t(V_{sb}) = V_{t0} + \alpha V_{sb}$ for steep retrograde body doping

$$\alpha = 3T_{oxe} / W_{dmax}$$

• basic I_{ds} model

$$I_{ds} = \frac{W}{L} C_{oxe} \mu_s (V_{gs} - V_t - \frac{m}{2} V_{ds}) V_{ds}$$

$$m = 1 + 3T_{oxe} / W_{dmax} \approx 1.2$$

Small α and m are desirable. Therefore, small T_{oxe} is good.
Ch.7 shows that large W_{dmax} is not acceptable.
CMOS circuit speed is determined by CV_{dd}/I_{dsat}, and its

power by
$$CV_{dd}^2 f + V_{dd} I_{off}$$
.

IV characteristics can be divided into a *linear region* and a *saturation region*.

 I_{ds} saturates at:

$$V_{dsat} = \frac{V_{gs} - V_t}{m}$$
$$I_{dsat} = \frac{W}{2mL} C_{oxe} \mu_s (V_{gs} - V_t)^2$$

transconductance:

$$g_{msat} = \frac{W}{mL} C_{oxe} \mu_s (V_{gs} - V_t)$$

Considering *velocity saturation*,

•At very small L $I_{dsat} = W_{v_{sat}}C_{oxe}(V_{gs} - V_t)$

•Velocity overshoot can lift v_{sat} , but source velocity limit sets a similar top over I_{dsat} .

$$I_{dsat} = WBv_{thx}C_{oxe}(V_{gs} - V_t)$$

- •Intrinsic voltage gain is g_{msat}/g_{ds}

•Noise arises from the channel, gate, substrate thermal noises, and the flicker noise.

SRAM, DRAM, Nonvolatle memory

	Keep Data Without Power?	Cell Size and Cost/bit	Rewrite Cycles	Write- One-byte Speed	Compatible with Basic CMOS Manufacturing	Main Applications
SRAM	No	Large	Unlimited	Fast	Totally	Embedded in logic chips
DRAM	No	Small	Unlimited	Fast	Need modifications	Stand-alone chips and embedded
Flash memory	Yes	Smallest	Limited	Slow	Need extensive modifications	Nonvolatile storage stand- alone

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-70