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Chapter 6  MOSFET

The MOSFET (MOS Field-Effect Transistor) is the 

building block of Gb memory chips, GHz 

microprocessors, analog, and RF circuits.

Match the following MOSFET characteristics with their 

applications:

• small size

• high speed

• low power

• high gain
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6.1  Introduction to the MOSFET

Basic MOSFET structure and IV characteristics

+ +
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6.1  Introduction to the MOSFET

Two ways of representing a MOSFET:
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Early Patents on the Field-Effect Transistor
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Early Patents on the Field-Effect Transistor

In 1935, a British patent was issued to Oskar Heil.  

A working MOSFET was not demonstrated until 1955.

Using today’s terminology, what are 1, 2, and 6?
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Polysilicon gate and 1.2nm SiO2

•1.2 nm SiO2 used in production. Leakage current through the 

oxide limits further thickness reduction.

6.2 MOSFETs Technology
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6.2  Complementary MOSFETs Technology

When Vg = Vdd , the NFET is on and the PFET is off. 

When Vg = 0, the PFET is on and the NFET is off.

NFET PFET
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CMOS (Complementary MOS) Inverter

A CMOS inverter is made of a PFET pull-up device and a 

NFET pull-down device. Vout = ? if Vin = 0 V.

C: 

Vin

 Vdd

   

 PFET

NFET

0V 0V

 S

 D

 D

 S

Vout

       
 etc.)
 (of interconnect,

 capacitance

    (a)
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CMOS (Complementary MOS) Inverter

• NFET and PFET can be fabricated 

on the same chip.

 Vin Vout

Vdd

0 V

        (c)

  
  
  
 N

-w
el

l

P+

N+

PFET

NFET

Contact

VddVout 0 V

 Vin

   N-well

         P-substrate

(b)

 P+ N+ N+ N+ P+  P+

• basic layout of a 

CMOS inverter
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6.3  Surface Mobilities and High-Mobility FETs

LVVVWC

LVWQWQvQWI
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How to measure the surface mobility:

Vg = Vdd , Vgs = Vdd

Ids

Vds > 0

6.3.1 Surface Mobilities
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Mobility is a function of the average of the fields at the 

bottom and the top of the inversion charge layer, Eb and Et .

From Gauss’s Law,
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•Surface roughness 

scattering is stronger 

(mobility is lower) at 

higher Vg, higher Vt, and 

thinner Toxe.

Universal Surface Mobilities

      (Vgs  + Vt + 0.2)/6Toxe (MV/cm)

–(Vgs  + 1.5Vt – 0.25)/6Toxe (MV/cm)

 
 (NFET)

 (PFET)
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2/V
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EXAMPLE:  What is the surface mobility at Vgs=1 V 

in an N-channel MOSFET with Vt=0.3 V and Toxe=2 

nm?

Solution:  

1 MV is a megavolt (106 V). From the mobility figure, 

mns=190 cm2/Vs, which is several times smaller than 

the bulk mobility.

MV/cm 25.1

cm1012/V 5.1

6/)2.0(

7

=

=

++

-

oxetgs TVV
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6.3.2  GaAs MESFET

MESFET IV characteristics are similar to MOSFET’s but does 

not require a gate oxide. 

Question: What is the advantage of GaAs FET over Si FET?

N-channel
N

+

metal

gate
source drain

GaAs

Semi-insulating substrate

N
+

Terms: depletion-mode transistor, enhancement-mode transistor
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6.3.3  HEMT, High Electron Mobility Transistor

N
+

metal gatesource drain

Undoped GaAs

N
+ ….......

N-GaAlAs

•The layer of electrons is called 2D-electron-gas, the equivalent 

of the inversion or accumulation layer of a MOSFET.

•A large-Eg semiconductor serves as the “gate dielectric”.
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6.3.4  JFET

•The gate is a P+N junction.  

•The FET is a junction field-effect transistor (JFET).

N-channel N
+

P+ gate
source drain

P-Si

N
+
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How to Measure the Vt of a MOSFET

6.4   Vt and Body Effect

•Method A. Vt is measured by extrapolating the Ids versus 

Vgs curve to Ids = 0.
tgsdsnstgsoxedsat VVVVVC

L

W
I --= m)(

•Method B. The Vg at which Ids =0.1mA   W/L

A

B
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• Two capacitors => two 

charge components

sbtsb

oxe
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• Redefine Vt as

MOSFET Vt and the Body Effect

Cdep

Coxe
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Body effect slows down circuits?  How can it be reduced?

MOSFET Vt and the Body Effect



   data
 model





-2               -1           0                  1               2
 Vsb (V)

NFET

PFET

Vt 0

Vt0

0.6

 -0.2

 -0.6

0.4

 -0.4

Vt (V)

0.2

  

• Body effect: Vt is a function 

of Vsb. When the source-body 

junction is reverse-biased,      

Vt increases.

• Body effect coefficient:

  = Cdep/Coxe

= 3Toxe / Wdep

sbtt VVV += 0
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Retrograde Body Doping Profiles

• Wdep does not vary with Vsb .

• Retrograde doping is popular because it reduces off-state

leakage and allows higher surface mobility.



   data
 model





-2               -1           0                  1               2
 Vsb (V)

NFET

PFET

Vt 0

Vt0

0.6

 -0.2

 -0.6

0.4

 -0.4

Vt (V)

0.2

  

Wdmax for uniform doping

Wdmax for retrograde doping
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Uniform Body Doping

When the source/body junction is reverse-biased, there are 

two quasi-Fermi levels (Efn and Efp) which are separated by 

qVsb. An NMOSFET reaches threshold of inversion when Ec

is close to Efn , not Efp . This requires the band-bending to be 

2B + Vsb , not 2B.
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 is the body-effect parameter.

Modern Semiconductor Devices for Integrated Circuits (C. Hu)



Slide 6-22

6.5  Qinv in MOSFET

• Channel voltage

Vc=Vs at x = 0 and

Vc=Vd at x = L. 

• Qinv = – Coxe(Vgs – Vcs – Vt0 –  (Vsb+Vcs)

= – Coxe(Vgs – Vcs – (Vt0 + Vsb) –  Vcs)

= – Coxe(Vgs – mVcs – Vt)

• m  1 +  = 1 + 3Toxe/Wdmax 

m is called the body-effect factor or bulk-charge factor
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6.6  Basic MOSFET IV Model

Ids= WQinvv= WQinvmnsE
= WCoxe(Vgs– mVcs – Vt)mnsdVcs/dx

cs

L V

tcsgsnsoxeds dVVmVVWCdxI
ds

)(
0 0  --= m

IdsL = WCoxemns(Vgs – Vt – mVds/2)Vds

dsdstgssoxeds VV
m

VVC
L

W
I )

2
( --= m
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Vdsat :  Drain Saturation Voltage

)(0 dstgsnsoxe

ds

ds mVVVC
L

W

dV

dI
--== m

m

VV
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tgs

dsat

-
=
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I = m nQinvdVcs/dx

Idsat

0  L
 x

I = m nQinvdVcs/dx

Idsat

0  L
 x

 0  L  0  L
 x  x

 0  L  0  L
 x  x

Qinv = Cox(Vg  - mVcs - Vt) Qinv

(b) (f)

(c) (g)

Ec

source

drain

 Ec

source

 drain

- - - - - -

 (d) (h)

(a) (e)Vds = Vdsat

 

Vds

Vdsat

Vds = Vdsat Vds > Vdsat

 Vcs  Vcs

Vds  - Vdsat
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Saturation Current and Transconductance

• transconductance: gm= dIds/dVgs

2)(
2

tgsnsoxedsat VVC
mL

W
I -= m

• linear region, saturation region

)( tgsnsoxemsat VVC
mL

W
g -= m
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6.7.1  CMOS Inverter--voltage transfer curve

Vin  (V)

Vout (V)

   0  0.5  1.0  1.5  2.0

0.5

1.0

2.0

1.5

Vdd

Vdd
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6.7.2   Inverter Speed – propagation delay

delaynpropagatio:d

C C

V1 V2 V3

Vdd ...........

............

V
dd

0

V2

V1

t

V32d
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How can the speed of an inverter circuit be improved?

6.7.2   Inverter Speed - Impact of Ion

VoutVin

Vdd
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Logic Gates

V dd

AB

A

B

This two-input NAND

gate and many other 

logic gates are 

extensions of the 

inverter.
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fCVkcurrentaverageVP dddddynamic

2 ==

6.7.3   Power Consumption

offddstatic IVP =

Total power consumption

staticdynamic PPP +=

VoutVin

Vdd
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6.8   Velocity Saturation

sat

ns
v

E

E
E

+

=

1

m

• Velocity saturation has

large and deleterious 

effect on the Ion of 

MOSFETS

E << Esat : v = m Ens

E >> Esat : v = m   Esatns
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6.9   MOSFET IV Model with Velocity Saturation

invds vWQI =

satdsdsdsdstgsnsoxeds EVIVV
m

VVWCLI /)
2

( ---= m
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6.9   MOSFET IV Model with Velocity Saturation
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LmEVV
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A simpler and more accurate Vdsat is:

6.9   MOSFET IV Model with Velocity Saturation
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EXAMPLE:  Drain Saturation Voltage

Question:  At Vgs = 1.8 V, what is the Vdsat of an NFET with 

Toxe = 3 nm,  Vt = 0.25 V, and Wdmax = 45 nm for (a) L =10 

mm, (b) L = 1 um, (c) L = 0.1 mm, and (d) L = 0.05 mm?

Solution: From Vgs , Vt , and Toxe , mns is 200 cm2V-1s-1. 

Esat= 2vsat/m ns = 8 104 V/cm

m = 1 + 3Toxe/Wdmax = 1.2

1

1
-

|
|











+

-
=

LEVV

m
V

sattgs

dsat
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(a) L = 10 mm,  Vdsat= (1/1.3V + 1/80V)-1 = 1.3 V

(b) L = 1 mm,      Vdsat= (1/1.3V + 1/8V)-1 = 1.1 V

(c) L = 0.1 mm,   Vdsat= (1/1.3V + 1/.8V)-1 =  0.5 V

(d) L = 0.05 mm, Vdsat= (1/1.3V + 1/.4V)-1 =  0.3 V

EXAMPLE:  Drain Saturation Voltage

1
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Idsat with Velocity Saturation

Substituting Vdsat for Vds in Ids equation gives:

LmE

VV

Ichannel-long

LmE

VV

VV
C

mL

W
I

sat

tgs

dsat

sat

tgs

tgs

soxedsat -
+

=
-

+

-
=

11

)(

2

2

m

Very short channel case:
tgssat VVLE -<<

)( VVCWvI
tgsoxesatdsat -=

• Idsat is proportional to Vgs–Vt rather than (Vgs – Vt)
2 , not

as sensitive to L as 1/L.

)( LmEVVCWvI sattgsoxesatdsat --=
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Measured MOSFET IV

What is the main difference between the Vg dependence 

of the long- and short-channel length IV curves?

0  1  2 2.5

Vds (V)

0.0

0.1

0.2

0.3

0.4

I d
s
 (

m
A

/m
m

)

L = 0.15 mm
Vgs = 2.5V

Vgs = 2.0V

Vgs = 1.5V

Vgs = 1.0V

Vds (V)

I d
s 

(m
A

/m
m

)

L = 2.0 mm Vgs = 2.5V

Vgs = 2.0V

Vgs = 1.5V

Vgs = 1.0V

0.0

0.01

0.02

0.03

(a)

(b)

Vt = 0.7 V

Vt  = 0.4 V

0  1  2 2.5

Vds (V)

0.0

0.1

0.2

0.3

0.4

I d
s
 (

m
A

/m
m

)

L = 0.15 mm
Vgs = 2.5V

Vgs = 2.0V

Vgs = 1.5V

Vgs = 1.0V

Vds (V)
I d

s 
(m

A
/m

m
)

L = 2.0 mm Vgs = 2.5V

Vgs = 2.0V

Vgs = 1.5V

Vgs = 1.0V

0.0

0.01

0.02

0.03

(a)

(b)

Vt = 0.7 V

Vt  = 0.4 V

Modern Semiconductor Devices for Integrated Circuits (C. Hu)



Slide 6-40

PMOS and NMOS IV Characteristics

The PMOS IV is qualitatively similar to the NMOS IV, 

but the current is about half as large. How can we 

design a CMOS inverter so that its voltage transfer 

curve is symmetric?
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6.9.1 Velocity Saturation vs. Pinch-Off

Instead of the pinch-off region, there is a velocity 

saturation region next to the drain where Qinv is a 

constant (Idsat/Wvsat).

Current saturation : the carrier velocity reaches 

Vsat at the drain.
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6.10   Parasitic Source-Drain Resistance

• Idsat can be reduced by about 15% in a 0.1mm MOSFET. 

Effect is greater in shorter MOSFETs.

• Vdsat = Vdsat0 + Idsat (Rs + Rd)

)(
1 0

0

tgs

sdsat

dsat
dsat

VV

RI

I
I

-
+

=• If Idsat0  Vg – Vt ,
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SALICIDE (Self-Aligned Silicide) Source/Drain

gate

oxide

dielectric spacercontact metal

channel

N+ source or drain

NiSi
2

or TiSi
2

After the spacer is formed, a Ti or Mo film is deposited. Annealing causes 

the silicide to be formed over the source, drain, and gate. Unreacted metal 

(over the spacer) is removed by wet etching.

Question:

• What is the purpose of siliciding the source/drain/gate?

• What is self-aligned to what?
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Definitions of Channel Length

LLL g -

L, Leff ,
or Le

Lg

N N

Ldraw n
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6.11  Extraction of the Series Resistance and the 

Effective Channel Length

L

 Rds

1 2

Ldrawn (mm)

 100

 200

 300
data

 intercept
Vds

Ids
-------- ( )

Vgs  - Vt = 1 V

Vgs - Vt = 2 V

)( tgs

drawn

dssoxe
ds VV

LL

VWC
I -

-
=

m

stgsoxe

drawn
ds

ds

ds

VVWC

LL
R

I

V

m)( -

-
+=

stgsoxe

drawnds
ds

VVWC

LLI
V

m)(

)(

-

-
=

Include series resistance, 

Rds  Rd + Rs ,
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6.12  Velocity Overshoot

• Velocity saturation

should not occur in very 

short MOSFETs.

• This velocity overshoot 

could lift the limit on Ids .

• But… 
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6.12  Source Velocity Limit

• Carrier velocity is limited

by the thermal velocity

with which they enter the

channel from the source.

• Idsat = WBvthxQinv 

= WBvthxCoxe(Vgs – Vt)

•Similar to

)( VVCWvI
tgsoxesatdsat -=
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6.13 Output Conductance

• Idsat does NOT saturate in the saturation region, especially 
in short channel devices!

• The slope of the Ids-Vds curve in the saturation region is 

called the output conductance (gds), 

ds

dsat
ds

dV

dI
g 

• A smaller gds is desirable for a 

large voltage gain, which is 

beneficial to analog and digital 

circuit applications.
0  1  2 2.5

Vds (V)

0.0

0.1

0.2

0.3

0.4

I d
s
 (

m
A

/m
m

)

L = 0.15 mm
Vgs = 2.5V

Vgs = 2.0V

Vgs = 1.5V

Vgs = 1.0V

Vds (V)

I d
s 

(m
A

/m
m

)

L = 2.0 mm Vgs = 2.5V

Vgs = 2.0V

Vgs = 1.5V

Vgs = 1.0V

0.0

0.01

0.02

0.03

(a)

(b)

Vt = 0.7 V

Vt  = 0.4 V
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Example of an Amplifier

outdsintmsa

dsdsgstmsads

gg

ggi





+=

+=

    

-= Ri outds /

• The transistor operates in the saturation region.  A small 
signal input, vin, is applied. 

• The voltage gain is gmsat/(gds + 1/R). 

• A smaller gds is desirable for large voltage gain.

• Maximum available gain (or intrinsic voltage gain) is gmsat/gds

in

out

Vdd

R

NFET
in

ds

msat
out

Rg

g
 

+

-
=

)/1(
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6.14 High-Frequency Performance

S

G

Rin

Rd

Rs

D

Low Frequency

Model

S

G

Rin

Rd

Rs

D

Low Frequency

Model

High-frequency performance is limited 

by input R and/or C.

Cutoff frequency (fT) : Frequency at 
which the output current becomes equal 
to the input current.

Maximum oscillation frequency (fmax) 
: Frequency at which the power gain 
drops to unity

iielectrodegin RRR += -

Intrinsic input resistanceGate-electrode resistance
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Gate-Electrode Resistance

Multi-finger layout greatly reduces 

the gate electrode resistance

2
12/ fggelectrodeg NLTWR =-

ρ : resistivity of gate material, 

Wf : width of each gate finger, 

Tg : gate thickness, 

Lg : gate length, 

Nf : number of fingers.  

Drain

Source

Rg-electrode
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Intrinsic Input Resistance

DS
Gch

Cox

Vdsat

G

Rg-electrode

Rch

ds

ds
chii

I

V
dRR  == 

The gate capacitor current flows through Rch to the 

source and ground.
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6.15 MOSFET Noises

Noise : All that corrupts the signal

External noise:
• Inductive and capacitive interferences and cross 

talks created by wiring
• Needs to be controlled with shielding and circuit 

layout carefully

Fundamental noise:
• Noise inherent to the electronic devices. 
• Due to the random behaviors of the electric 

carriers inside the device
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6.15.1 Thermal Noise of a Resistor

Thermal noise: caused by 

random thermal motion of the 

charge carriers

f

S ( f )

S : noise power density 

spectrum
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6.15.2 MOSFET Thermal Noise

DS

Cox

Vdsat

~

v
d
2



G

dsds gfkTv /42 = 

dsds fgkTi = 42

D

S D

B

G

2

dsv
2

dsi
S

2

gi

Parasitic-resistance noise
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6.15.3 MOSFET Flicker Noise

Many traps  produce a 1/f 

power density spectrum.  

1/f noise

10 100 1k 10k
1E-20

1E-18

1E-16

Model representation of measurement

1/f

 where  = 1 + a/ = 1.15 

a =  0.17A
-1

W/L = 10mm/0.28mm
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by a single oxide trap generate 

Random Telegraph Noise 
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6.15.4 Signal to Noise Ratio, Noise Factor, 

Noise Figure

SNR: Signal power   noise power.  

Noise factor: The ratio of the input SNR and output 

SNR.

00 /

/

NS

NS
F ii=

Decibel or dB:10 times the base-10 logarithm of the    

noise power.

N

S
log10 
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6.16 Memory Devices

Keep 

data 

without 

power?

Cell size

and

cost/bit

Rewrite 

cycles

Write-

one-

byte 

speed

Compatible 

with basic 

CMOS 

fabrication

Main 

applications

SRAM No Large Unlimited Fastest Totally Embedded in 

logic chips

DRAM No Small Unlimited Fast Needs 

modification

Stand-alone 

main memory

Flash 

memory 

(NVM)

Yes Smallest Limited Slow Needs 

extensive 

modification

Nonvolatile 

data and code 

storage
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6.16.1 SRAM

M1
M2

M3 M4
M5

M6

“HI” 
(LOW)

“LOW” 
(HI)

Vdd

BL BLC

WL
>Fastest among all 

memories.             

>Totally CMOS 

compatible.               

>Cost per bit is the 

highest-- uses 6 transistors 

to store one bit of data.
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6.16.2 DRAM

•DRAM capacitor 

can only hold the data 

(charge) for a limited 

time because of 

leakage current.

Bit-line 1

Word-line 1

Bit-line 2

Word-line 2

•Needs refresh.

•Needs ~10fF C in a 

small and shrinking 

area -- for refresh time 

and error rate.
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6.16.2 DRAM capacitor technology

Capacitor

Bit-Line

Word Line

Capacitor

Bit-Line

Word Line

Stacked capacitor and 

Trench capacitor
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6.16.3 Nonvolatile (Flash) Memory

•Floating gate 

(poly-Si) 

•Charge trap 

(SONOS)

•Nanocrystal
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Phase Change Memory

Alloy of Ge, Sb, Te has high resistivity in 

amorphous phase and low resistivity in 

polycrystalline phase.
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3D (Multi-layer) Memory

• Epitaxy from seed windows can produce Si layers.

• Ideally memory element is simple and does not need 

single-crystalline material.
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Resistive Memory (RRAM)

-- Organic, inorganic, metallic.. material

-- Future extension to 3-D
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6.17  Chapter Summary

• propagation delay

)
11

(
4 onPonN

dd
d

II

CV
+

• Power Consumption

offdddd IVfkCVP += 2

sbtsbt VVVV += 0)( for steep retrograde body doping

• body effect

dmaxoxe WT /3=
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6.17  Chapter Summary

• basic Ids model

dsdstgssoxeds VV
m

VVC
L

W
I )

2
( --= m

2.1/31 += dmaxoxe WTm

• Small  and m are desirable. Therefore, small Toxe is good.

Ch.7 shows that large Wdmax is not acceptable.

• CMOS circuit speed is determined by CVdd/Idsat , and its 

power by CVdd
2f + VddIoff .
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6.17  Chapter Summary

IV characteristics can be divided into a linear region 

and a saturation region. 

Ids saturates at:

2)(
2

tgssoxedsat

tgs

dsat

VVC
mL

W
I

m

VV
V

-=

-
=

m

Considering velocity saturation,

1

1
-

÷
÷











+

-
=

LEVV

m
V

sattgs

dsat

LmE

VV

Ichannel-long
I

sat

tgs

dsat

dsat -
+

=

1

)( tgssoxemsat VVC
mL

W
g -= m

transconductance:
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6.17  Chapter Summary

•At very small L )( VVCWvI
tgsoxesatdsat -=

•Velocity overshoot can lift vsat , but source velocity limit sets a 

similar top over Idsat .
Idsat = WBvthxCoxe(Vgs – Vt)

•Intrinsic voltage gain is gmsat/gds

•High fT and fMAX need low iielectrodegin RRR += -

ds

ds
ii

I

V
R 

2

felectrodeg NR -

•Noise arises from the channel, gate, substrate thermal noises, and    

the flicker noise.
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6.17  Chapter Summary

SRAM, DRAM, Nonvolatle memory
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