Chapter 6 MOSFET

The MOSFET (MOS Field-Effect Transistor) is the building block of Gb memory chips, GHz microprocessors, analog, and RF circuits.

Match the following MOSFET characteristics with their applications:

- small size
- high speed
- low power
- high gain

6.1 Introduction to the MOSFET

Basic MOSFET structure and IV characteristics

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-3

Early Patents on the Field-Effect Transistor

Jan. 23, 1930.

J. E. LILJENFELD

1,745,175

METHOD AND APPARATUS FOR CONTROLLING ELECTRIC CURRENTS

Filed Oct. 8, 1926

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-4

*Polysilicon gate and 1.2nm SiO*² *6.2 MOSFETs Technology*

•1.2 nm SiO₂ used in production. Leakage current through the oxide limits further thickness reduction.

> Slide 6-6 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-11 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Universal Surface Mobilities

•Surface roughness scattering is stronger (mobility is lower) at higher V_g , higher V_t , and thinner T_{oxe} .

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-12

EXAMPLE: What is the surface mobility at Vgs=1 V in an N-channel MOSFET with V_t=0.3 V and $T_{\alpha r}$ *=2 nm?*

Solution: $=1.25$ MV/cm $= 1.5 \text{ V} / 12 \times 10^{-7} \text{ cm}$ $(V_{gs} + V_{t} + 0.2)/6T_{oxe}$

1 MV is a megavolt (10⁶ V). From the mobility figure, μ_{ns} =190 cm2/Vs, which is several times smaller than *the bulk mobility.*

6.3.2 GaAs MESFET

MESFET IV characteristics are similar to MOSFET's but does not require a gate oxide.

Question: What is the advantage of GaAs FET over Si FET?

Terms: *depletion-mode transistor, enhancement-mode transistor*

•The layer of electrons is called **2D-electron-gas**, the equivalent of the inversion or accumulation layer of a MOSFET.

> Slide 6-15 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

MOSFET V^t and the Body Effect

• **Two capacitors => two charge components**

$$
C_{dep} = \frac{\varepsilon_s}{W_{d \max}}
$$

MOSFET V^t and the Body Effect

• *Body effect*: V_t is a function of *Vsb.* When the source-body junction is reverse-biased, $|V_t|$ increases.

• *Body effect coefficient*:

$$
V_t = V_{t0} + \alpha V_{sb}
$$

$$
\alpha = C_{dep} / C_{oxe}
$$

= 3T_{oxe} / W_{dep

Body effect slows down circuits? How can it be reduced?

Slide 6-19 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

- W_{dep} does not vary with V_{sb} .
- Retrograde doping is popular because it reduces off-state leakage and allows higher surface mobility.

Uniform Body Doping

When the source/body junction is reverse-biased, there are two quasi-Fermi levels $(E_{fn}$ and E_{fp}) which are separated by qV_{sb} . An NMOSFET reaches threshold of inversion when E_c is close to E_{fn} , not E_{fp} . This requires the band-bending to be $2\phi_B + V_{sb}$, not $2\phi_B$.

$$
V_{t} = V_{t0} + \frac{\sqrt{qN_{a}2\varepsilon_{s}}}{C_{oxe}} (\sqrt{2\phi_{B} + V_{sb}} - \sqrt{2\phi_{B}})
$$

= $V_{t0} + \gamma(\sqrt{2\phi_{B} + V_{sb}} - \sqrt{2\phi_{B}})$

 γ is the *body-effect parameter.*

Vdsat : Drain Saturation Voltage

Slide 6-24 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-25 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Saturation Current and Transconductance

• linear region, saturation region

$$
I_{dsat} = \frac{W}{2mL} C_{oxe} \mu_{ns} (V_{gs} - V_t)^2
$$

• transconductance: $g_m = dI_{ds}/dV_{gs}$

$$
g_{msat} = \frac{W}{mL} C_{oxe} \mu_{ns} (V_{gs} - V_t)
$$

Slide 6-26 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

6.7.1 CMOS Inverter--voltage transfer curve I_{dd} (mA) $2V$ $V_{\text{in}} = 0$ V $V_{\text{in}} = 2$ V I_{dd} 0.2^{\prime} **PFET PFET NFET** D $V_{\text{in}} = 1.5 \text{ V}$ $V_{\text{in}} = 0.5 \text{ V}$ $V_{\rm in}$ \bullet V_{out} 0.1 $V_{\text{in}} = 1$ V $V_{\text{in}} = 1$ V

Slide 6-27 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-30 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

6.7.3 Power Consumption

$$
P_{\text{dynamic}} = V_{\text{dd}} \times \text{average current} = k \, CV_{\text{dd}}^2 f
$$

$$
P_{static} = V_{dd} I_{off}
$$

Total power consumption

$$
P = P_{dynamic} + P_{static}
$$

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

6.8 Velocity Saturation

$$
\mathbf{E} << \mathbf{E}_{sat} : v = \mu_{ns} \mathbf{E}
$$

$$
\mathbf{E} >> \mathbf{E}_{sat} : v = \mu_{ns} \mathbf{E}_{sat}
$$

• Velocity saturation has large and deleterious effect on the *Ion* of **MOSFETS**

6.9 MOSFET IV Model with Velocity Saturation

$$
I_{ds} = WQ_{inv}v
$$

\n
$$
I_{ds} = WC_{oxe}(V_{gs} - mV_{cs} - V_t) \frac{\mu_{ns}dV_{cs}/dx}{1 + \frac{dV_{cs}}{dx}/E_{sat}}
$$

\n
$$
\int_0^L I_{ds}dx = \int_0^{V_{ds}} [WC_{oxe}\mu_{ns}(V_{gs} - mV_{cs} - V_t) - I_{ds}/E_{sat}]dV_{cs}
$$

\n
$$
I_{ds}L = WC_{oxe}\mu_{ns}(V_{gs} - V_t - \frac{m}{2}V_{ds})V_{ds} - I_{ds}V_{ds}/E_{sat}
$$

Slide 6-33 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-34 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

6.9 MOSFET IV Model with Velocity Saturation

Solving
$$
\frac{dI_{ds}}{dV_{ds}} = 0
$$
,

$$
V_{dsat} = \frac{2(V_{gs} - V_t)/m}{1 + \sqrt{1 + 2(V_{gs} - V_t)/mE_{sat}L}}
$$

A simpler and more accurate *Vdsat* is:

$$
\frac{1}{V_{dsat}} = \frac{m}{V_{gs} - V_t} + \frac{1}{\mathbf{E}_{sat}L}
$$
\n
$$
\mathbf{E}_{sat} = \frac{2v_{sat}}{\mu_{ns}}
$$

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-35

EXAMPLE: Drain Saturation Voltage

Question: At $V_{gs} = 1.8$ V, what is the V_{dsat} of an NFET with $T_{\text{ov}_e} = 3 \text{ nm}, V_t = 0.25 \text{ V}, \text{ and } W_{\text{dmax}} = 45 \text{ nm}$ for (a) $L = 10$ μ *m*, (b) $L = 1$ *um*, (c) $L = 0.1$ μ *m*, and (d) $L = 0.05$ μ *m*?

Solution: From V_{gs} , V_t , and T_{oxe} , μ_{ns} is 200 cm² V^1s^{-1} .

$$
\mathbf{E}_{sat} = 2v_{sat}/\mu_{ns} = 8 \times 10^4 \text{ V/cm}
$$

$$
m = 1 + 3T_{oxe}/W_{dmax} = 1.2
$$

$$
V_{dsat} = \left(\frac{m}{V_{gs} - V_t} + \frac{1}{\mathbf{E}_{sat}L}\right)^{-1}
$$

Slide 6-36 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

EXAMPLE: Drain Saturation Voltage

$$
V_{dsat} = \left(\frac{m}{V_{gs} - V_t} + \frac{1}{\mathbf{E}_{sat}L}\right)^{-1}
$$

(a)
$$
L = 10 \mu m
$$
, $V_{dsat} = (1/1.3V + 1/80V)^{-1} = 1.3 V$
\n(b) $L = 1 \mu m$, $V_{dsat} = (1/1.3V + 1/8V)^{-1} = 1.1 V$
\n(c) $L = 0.1 \mu m$, $V_{dsat} = (1/1.3V + 1/.8V)^{-1} = 0.5 V$
\n(d) $L = 0.05 \mu m$, $V_{dsat} = (1/1.3V + 1/.4V)^{-1} = 0.3 V$

Slide 6-37 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Idsat with Velocity Saturation

Substituting V_{dsat} for V_{ds} in I_{ds} equation gives:

Very short channel case: $E_{ext}L \ll V_{ex} - V_{ex}$

$$
\begin{array}{cccc}\n\bullet & sat & \bullet & sst & \bullet & t \\
\hline\n\bullet & sat & \bullet & sst & \bullet & t \\
\end{array}
$$

$$
I_{dsat} = Wv_{sat}C_{oxe}(V_{gs} - V_t - mE_{sat}L)
$$

$$
I_{\text{dsat}} = Wv_{\text{sat}}C_{\text{oxe}}(V_{\text{gs}} - V_t)
$$

• I_{dsat} is proportional to $V_{gs} - V_t$ rather than $(V_{gs} - V_t)^2$, not as sensitive to *L* as 1/*L*.

> Slide 6-38 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-39 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

PMOS and NMOS IV Characteristics

The PMOS IV is qualitatively similar to the NMOS IV, but the current is about half as large. How can we design a CMOS inverter so that its voltage transfer curve is symmetric?

> Slide 6-40 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

6.9.1 Velocity Saturation vs. Pinch-Off

Current saturation : the carrier velocity reaches V_{sat} at the drain.

Instead of the **pinch-off region**, there is a **velocity saturation region** next to the drain where Q_{inv} is a constant $(I_{\text{dest}}/W_{\text{vest}})$.

6.10 Parasitic Source-Drain Resistance

• If
$$
I_{dsat0} \propto V_g - V_t
$$
, $I_{dsat} = \frac{I_{dsat0}}{1 + \frac{I_{dsat0}R_s}{(V_{gs} - V_t)}}$

• *I_{dsat}* can be reduced by about 15% in a 0.1µm MOSFET. Effect is greater in shorter MOSFETs.

•
$$
V_{dsat} = V_{dsat0} + I_{dsat}(R_s + R_d)
$$

After the spacer is formed, a Ti or Mo film is deposited. Annealing causes the silicide to be formed over the source, drain, and gate. Unreacted metal (over the spacer) is removed by wet etching.

Question:

- What is the purpose of siliciding the source/drain/gate?
- What is self-aligned to what?

Definitions of Channel Length

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-44

6.12 Velocity Overshoot

• Velocity saturation should not occur in very short MOSFETs.

- This velocity overshoot could lift the limit on Ids .
- *But…*

Slide 6-46 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

6.12 Source Velocity Limit

• Carrier velocity is limited by the thermal velocity with which they enter the channel from the source.

•
$$
I_{dsat} = WBv_{thx}Q_{inv}
$$

= $WBv_{thx}C_{oxe}(V_{gs} - V_t)$

•Similar to

$$
I_{\text{dsat}} = Wv_{\text{sat}}C_{\text{oxe}}(V_{\text{gs}} - V_t)
$$

Slide 6-47 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

6.13 Output Conductance

- I_{dest} does NOT saturate in the saturation region, especially in short channel devices!
- The slope of the I_{ds} -V_{ds} curve in the saturation region is called the **output conductance** (g_{ds}),

Slide 6-48 *L* Silue behind the 2.5V silue behind the 2.5 gra \overline{a} Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Example of an Amplifier

The transistor operates in the saturation region. A *small signal* input, v_{in} , is applied.

$$
i_{ds} = g_{msat} \cdot v_{gs} + g_{ds} \cdot v_{ds}
$$

$$
= g_{msat} \cdot v_{in} + g_{ds} \cdot v_{out}
$$

$$
i_{ds} = -v_{out} / R \cdot
$$

$$
v_{out} = \frac{-g_{msat}}{(g_{ds} + 1/R)} \times v_{in}
$$

- The voltage gain is $g_{\text{msat}}/(g_{ds} + 1/R)$.
- A smaller g_{ds} is desirable for large voltage gain.
- Maximum available gain (or intrinsic voltage gain) is $g_{\text{msat}}/g_{\text{ds}}$

6.14 High-Frequency Performance

D by input R and/or C. High-frequency performance is limited

> **Cutoff frequency (f_T): Frequency at** which the output current becomes equal to the input current.

> **Maximum oscillation frequency** (f_{max}) : Frequency at which the power gain drops to unity

Slide 6-50 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

 R ^{*in*} = R ^{*g*-*electrode* + R ^{*ii*}}

Gate-Electrode Resistance

Drain

Multi-finger layout greatly reduces the gate electrode resistance

$$
R_{g-electrode} = \rho W / 12 T_g L_g N_f^2
$$

- ρ : resistivity of gate material, W_f : width of each gate finger,
- T_g : gate thickness,
- L_g : gate length,
- N_f : number of fingers.

Slide 6-51 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Intrinsic Input Resistance

$$
R_{ii} = \kappa \int dR_{ch} = \kappa \frac{V_{ds}}{I_{ds}}
$$

The gate capacitor current flows through R_{ch} to the source and ground.

> Slide 6-52 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

6.15 MOSFET Noises

Noise : All that corrupts the signal

External noise:

- Inductive and capacitive interferences and cross talks created by wiring
- Needs to be controlled with shielding and circuit layout carefully

Fundamental noise:

- Noise inherent to the electronic devices.
- Due to the random behaviors of the electric carriers inside the device

6.15.1 Thermal Noise of a Resistor

Thermal noise: caused by random thermal motion of the charge carriers

S **:** noise power density spectrum

Slide 6-54 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

f

White noise

S (f)

 $v_O(t)$

6.15.3 MOSFET Flicker Noise

ox

Charge trapping and releasing by a single oxide trap generate Random Telegraph Noise

Slide 6-56 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

6.15.4 Signal to Noise Ratio, Noise Factor, Noise Figure

SNR: Signal power noise power.

Decibel or dB:10 times the base-10 logarithm of the noise power. *N S* $\frac{1}{2}$ lonse power.
mes the base-10 loga
power.
10 × log

Noise factor: The ratio of the input SNR and output SNR. / S^+_i/N $F = \frac{S_i / IV_i}{S_i / N_i}$

 $_0 / N_0$

 S_0/N

6.16 Memory Devices

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-58

6.16.1 SRAM

>Fastest among all memories. >Totally CMOS compatible. >Cost per bit is the highest-- uses 6 transistors to store one bit of data.

6.16.2 DRAM

•DRAM capacitor can only hold the data (charge) for a limited time because of leakage current.

•Needs refresh.

•Needs ~10fF C in a small and shrinking area -- for refresh time and error rate.

Slide 6-60 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-61

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 6-62

Phase Change Memory

Alloy of Ge, Sb, Te has high resistivity in amorphous phase and low resistivity in polycrystalline phase.

3D (Multi-layer) Memory

- Epitaxy from seed windows can produce Si layers.
- Ideally memory element is simple and does not need single-crystalline material.

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Resistive Memory (RRAM)

-- Organic, inorganic, metallic.. material **--** Future extension to 3-D

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

• *propagation delay*

• *Power Consumption*

$$
P = kCV_{dd}^2 f + V_{dd}I_{off}
$$

• *body effect*

 $V_t(V_{sb}) = V_{t0} + \alpha V_{sb}$ for steep retrograde body doping

$$
\alpha = 3T_{oxe} / W_{dmax}
$$

Slide 6-66 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

• *basic* I_{ds} *model*

$$
I_{ds} = \frac{W}{L} C_{oxe} \mu_s (V_{gs} - V_t - \frac{m}{2} V_{ds}) V_{ds}
$$

$$
m = 1 + 3T_{oxe} / W_{dmax} \approx 1.2
$$

• Small α and *m* are desirable. Therefore, small $T_{\alpha r}$ is good. Ch.7 shows that large W_{dmax} is not acceptable. • CMOS circuit speed is determined by CV_{dd}/I_{dsat} , and its power by $CV_{dd}^2 f + V_{dd}^2 I_{off}$.

IV characteristics can be divided into a *linear region* and a *saturation region.*

Ids saturates at:

$$
V_{dsat} = \frac{V_{gs} - V_t}{m}
$$

$$
I_{dsat} = \frac{W}{2mL} C_{oxe} \mu_s (V_{gs} - V_t)^2
$$

transconductance:

$$
g_{msat} = \frac{W}{mL} C_{oxe} \mu_s (V_{gs} - V_t)
$$

Considering *velocity saturation,*

Slide 6-68 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

•At very small L $I_{dsat} = Wv_{sat}C_{oxe}(V_{gs} - V_t)$

•Velocity overshoot can lift v_{sat} , but source velocity limit sets a similar top over I_{dsat} .)

$$
I_{dsat} = W B v_{thx} C_{oxe} (V_{gs} - V_t)
$$

- •Intrinsic voltage gain is $g_{\text{msat}}/g_{\text{ds}}$
- •High f_T and f_{MAX} need low $R_{in} = R_{g-electrode} + R_{ii}$

$$
R_{ii} \propto \frac{V_{ds}}{I_{ds}} \qquad R_{g-electrode} \propto N_f
$$

2

•Noise arises from the channel, gate, substrate thermal noises, and the flicker noise.

> Slide 6-69 Modern Semiconductor Devices for Integrated Circuits (C. Hu)

SRAM, DRAM, Nonvolatle memory

Modern Semiconductor Devices for Integrated Circuits (C. Hu)