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Chapter 5   MOS Capacitor

MOS: Metal-Oxide-Semiconductor
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This energy-band diagram for Vg = 0 is not the simplest one.
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5.1  Flat-band Condition and Flat-band Voltage

E0 : Vacuum level

E0 – Ef : Work function

E0 – Ec : Electron affinity

Si/SiO2 energy barrier
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the flat band voltage.
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5.2   Surface Accumulation
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3.1eV
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Make Vg < Vfb

s is negligible when

the surface is in 

accumulation.

s : surface potential, band 

bending

Vox: voltage across the oxide
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5.2  Surface Accumulation

fbgox VVV −=

)( fbgoxacc VVCQ −−=
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5.3 Surface Depletion

ox

ssa

sfboxsfbg
C

qN
VVVV




2
++=++=

This equation can be solved to yield s .
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5.4  Threshold Condition and Threshold Voltage

Threshold (of inversion):

ns = Na , or

(Ec–Ef)surface= (Ef –Ev)bulk , or

A=B, and C = D
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Threshold Voltage

ox

Bsa

Bfbgt
C

qN
VthresholdatVV




22
2 ++==

oxsfbg VφVV ++=

At threshold,











==

i

a
Bst

n

N

q

kT
ln22

ox

Bsa

ox
C

qN
V

 22
=

Modern Semiconductor Devices for Integrated Circuits  (C. Hu)



Slide 5-10

Threshold Voltage
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5.5  Strong Inversion–Beyond Threshold
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Inversion Layer Charge, Qinv (C/cm2)
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5.5.1  Choice of Vt  and Gate Doping Type

Vt is generally set at a small 

positive value so that, at Vg = 

0, the transistor does not 

have an inversion layer and 

current does not flow 

between the two N+ regions

• P-body is normally paired with N+-gate to achieve a small 

positive threshold voltage.

• N-body is normally paired with P+-gate to achieve a small 

negative threshold voltage.

Modern Semiconductor Devices for Integrated Circuits  (C. Hu)



Slide 5-14

Review : Basic MOS Capacitor Theory
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Review : Basic MOS Capacitor Theory
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5.6   MOS CV Characteristics
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5.6   MOS CV Characteristics
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CV Characteristics
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Capacitor and Transistor CV (or HF and LF CV)

Modern Semiconductor Devices for Integrated Circuits  (C. Hu)



Slide 5-21

Quasi-Static CV of MOS Capacitor

The quasi-static CV is obtained by the application of a slow linear-

ramp voltage (< 0.1V/s) to the gate, while measuring Ig with a very 

sensitive DC ammeter. C is calculated from Ig = C·dVg/dt. This allows 

sufficient time for Qinv to respond to the slow-changing Vg .

C
Cox

accumulation depletion inversion

Vg
Vfb Vt
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(1) MOS transistor, 10kHz. (Answer: QS CV).

(2) MOS transistor, 100MHz. (Answer: QS CV).

(3) MOS capacitor, 100MHz. (Answer: HF capacitor CV).

(4) MOS capacitor, 10kHz. (Answer: HF capacitor CV).

(5) MOS capacitor, slow Vg ramp. (Answer: QS CV). 

(6) MOS transistor, slow Vg ramp. (Answer: QS CV). 

EXAMPLE : CV of MOS Capacitor and Transistor

Does the QS CV or the HF 

capacitor CV apply?

C

Vg

QS CV

HF capacitor CV

MOS transistor CV,
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5.7  Oxide Charge–A Modification to Vfb and Vt
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Types of oxide charge:

• Fixed oxide charge, Si+

• Mobile oxide charge, due to Na+contamination

• Interface traps, neutral or charged depending on Vg.

• Voltage/temperature stress induced charge and 

traps--a reliability issue

5.7  Oxide Charge–A Modification to Vfb and Vt

Modern Semiconductor Devices for Integrated Circuits  (C. Hu)



Slide 5-25

EXAMPLE: Interpret this measured Vfb dependence on oxide 

thickness. The gate electrode is N+ poly-silicon.

oxoxoxsgfb TQV  /−−=Solution:

What does it tell us? Body work function? Doping type? Other?

0

–0.15V

–0.3V

Tox

Vfb

10 nm 20 nm 30 nm







Modern Semiconductor Devices for Integrated Circuits  (C. Hu)



Slide 5-26

from intercept V 15.0−=− sg 
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5.8   Poly-Silicon Gate Depletion–Effective 

Increase in Tox
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If Wdpoly= 15 Å, what is the 

effective increase in Tox?
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Effect of Poly-Gate Depletion on Qinv

)( tpolygoxinv VVCQ −−= 

• How can poly-depletion be 

minimized?

W
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P+ -gate N-substrate

• Poly-gate depletion degrades 

MOSFET current and circuit speed.
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EXAMPLE : Poly-Silicon Gate Depletion

Vox , the voltage across a 2 nm thin oxide, is –1 V. The P+ poly-

gate doping is Npoly = 8 1019 cm-3 and substrate Nd is 1017cm-3. 

Find (a) Wdpoly , (b) poly , and (c) Vg .

Solution:

(a)

nm3.1

8C106.1cm102

V1)F/cm(1085.89.3

//

197

14

=

=

==

cm10
319 −−−

−

polyoxoxoxpolyoxoxdpoly qNTVqNW  E



   


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Is the loss of 0.11 V from the 1.01 V significant?

EXAMPLE : Poly-Silicon Gate Depletion
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5.9  Inversion and Accumulation Charge-Layer 

Thickness–Quantum Mechanical Effect

Average inversion-layer location below the Si/SiO2 interface is 

called the inversion-layer thickness, Tinv .

n(x) is determined by Schrodinger’s eq., 

Poisson eq., and Fermi function.

-50 -40 -30 -20 -10 0 10 20 30 40 A

 Electron Density

Quantum

mechanical theory

SiO2

poly-Si
depletion
region

Å
50

Tinv SiGate

Effective Tox

Physical Tox
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Electrical Oxide Thickness, Toxe

• Tinv is a function of 

the average electric 

field in the inversion 

layer, which is (Vg + 

Vt)/6Tox (Sec. 6.3.1).

• Tinv of holes is larger 

than that of electrons 

because of difference 

in effective mass.

•Toxe is the electrical 

oxide thickness. 

3/3/ invdpolyoxoxe TWTT ++= at Vg=Vdd
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Effective Oxide Thickness and Effective 

Oxide Capacitance

)( tgoxeinv VVCQ −=

C
Basic CV

with poly-depletion

with poly-depletion and
charge-layer thickness

Vg

measured data

Cox

3/3/ invdpolyoxoxe TWTT ++=
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Equivalent circuit in the depletion and the inversion regimes

Cpoly

Cox

Cdep Cinv

Cox

Cdep

Cpoly

Cox

Cdep,min Cinv
Cinv

Cox

(a) (b) (c) (d)

General case for 

both depletion and 

inversion regions.

In the depletion 

regions
Vg  Vt Strong inversion
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5.10   CCD Imager and CMOS Imager

Deep depletion, Qinv= 0 Exposed to light

5.10.1 CCD Imager

+

-
-
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Ec , Ef

Ev
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 Ef
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 Ev

(a) (b)

-
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CCD Charge Transfer

P-Si

oxide

V2

- - -- - - -- - - - --
- -depletion region

P-Si

oxide
- - -- - - --

depletion region

P-Si
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- - -- - - --
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(a)

(b)

(c)

V1 > V2 = V3

V1

V2

V3

V1 V3 V1 V2 V3 V1

V2 > V1 > V3

V2 > V1 = V3

V1
V2 V3 V1

V2 V3 V1
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two-dimensional CCD imager

The reading row is shielded from the light by a metal film. 

The 2-D charge packets are read row by row.

Signal out

Charge-to-voltage converter

Reading row, 

shielded from light
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5.10.2  CMOS Imager

CMOS imagers can be 

integrated with signal 

processing and control 

circuitries to further 

reduce system costs. 

However, The size 

constrain of the sensing 

circuits forces the CMOS 

imager to use very 

simple circuits
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5.11  Chapter Summary

N-type device: N+-polysilicon gate over P-body

P-type device: P+-polysilicon gate over N-body

)/( oxoxsgfb CQV −+−= 
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+ : N-type device,  – : P-type device

5.11  Chapter Summary
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N-type Device

(N+-gate over P-substrate)

P-type Device

(P+-gate over N-substrate)

What’s the diagram like at Vg > Vt ?  at Vg= 0?
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Accumulation

 Ef

Ef

Vg=Vfb<0

 Ef

Ef

Vg=Vfb>0
    Flat-band

 EfEf

Vg0>Vfb

 Ef
Ef

Vg0<Vfb

   

Ef

Vg=Vt>0

 Ef

 Ef

Ef

Vg=Vt<0   Threshold

    Depletion

 Ef

Ef

Vg>Vt>0

 Ef

Ef

   Vg<Vt
 Inversion

 N-type Device
(N

+
-gate over P-substrate)

P-type Device
(P

+
-gate over N-substrate)

Ef

Ef

Vg>Vfb>0

 Ef

Ef

   Vg<Vfb<0
Accumulation

 Ef

Ef

Vg=Vfb<0

 Ef

Ef

Vg=Vfb>0
    Flat-band

 EfEf
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What is the root cause of the low C in the HF CV branch? 

5.11  Chapter Summary

Vg

       N-type Device
(N+-gate over P-substrate)

    P-type Device
(P+-gate over N-substrate)

Vg

   QS CV
Transistor CV

 Capacitor
 (HF) CV
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