Chapter 1 Electrons and Holes in Semiconductors

1.1 Silicon Crystal Structure

- *Unit cell* of silicon crystal is cubic.
- Each Si atom has 4 nearest neighbors.

Silicon Wafers and Crystal Planes

- The standard notation for crystal planes is based on the cubic unit cell.
- Silicon wafers are usually cut along the (100) plane with a flat or notch to help orient the wafer during IC fabrication.

electron, a hole is also created.

Dopants in Silicon

- As, a Group V element, introduces conduction electrons and creates *N-type silicon*, and is called a *donor*.
- B, a Group III element, introduces holes and creates *P-type silicon*, and is called an *acceptor*.
- Donors and acceptors are known as dopants. Dopant ionization energy ~50meV (very low).

Hydrogen:
$$E_{ion} = \frac{m_0 q^4}{8\epsilon_0^2 h^2} = 13.6 \text{ eV}$$

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

GaAs, III-V Compound Semiconductors, and Their Dopants

- Ga: As : Ga: As: Ga : As:
- Ga: As: Ga:

- GaAs has the same crystal structure as Si.
- GaAs, GaP, GaN are III-V compound semiconductors, important for optoelectronics.
- Wich group of elements are candidates for donors? acceptors?

- Energy states of Si atom (a) expand into energy bands of Si crystal (b).
- The lower bands are filled and higher bands are empty in a semiconductor.
- The highest filled band is the *valence band*.
- The lowest empty band is the *conduction band*.

1.3.1 Energy Band Diagram

• *Energy band diagram* shows the bottom edge of conduction band, E_c , and top edge of valence band, E_v .

• E_c and E_v are separated by the **band gap energy**, E_g .

Measuring the Band Gap Energy by Light Absorption

• E_g can be determined from the minimum energy (hv) of photons that are absorbed by the semiconductor.

-	Semi- conductor	InSb	Ge	Si	GaAs	GaP	ZnSe	Diamond	
	Eg (eV)	0.18	0.67	1.12	1.42	2.25	2.7	6	

Bandgap energies of selected semiconductors

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

- Totally filled bands and totally empty bands do not allow current flow. (Just as there is no motion of liquid in a totally filled or totally empty bottle.)
- Metal conduction band is half-filled.
- Semiconductors have lower E_g 's than insulators and can be doped.

1.5 Electrons and Holes

- Both electrons and holes tend to seek their lowest energy positions.
- Electrons tend to fall in the energy band diagram.
- Holes float up like bubbles in water.

1.5.1 Effective Mass

The electron wave function is the solution of the three dimensional Schrodinger wave equation

$$-\frac{\hbar^2}{2m_0}\nabla^2\psi + V(r)\,\psi = \psi$$

The solution is of the form $exp(\pm \mathbf{k} \cdot \mathbf{r})$ k = wave vector = 2π /electron wavelength For each k, there is a corresponding E.

acceleration =
$$-\frac{q\varepsilon}{\hbar^2} \frac{d^2 E}{dk^2} = \frac{F}{m}$$

effective mass = $\frac{\hbar^2}{d^2 E / dk^2}$

Conduction band Valence band

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

1.5.1 Effective Mass

In an electric field, E, an electron or a hole accelerates.

Electron and hole effective masses

	Si	Ge	GaAs	InAs	AlAs
m _n /m _o	0.26	0.12	0.068	0.023	2
m_p/m_0	0.39	0.3	0.5	0.3	0.3

Slide 1-13

1.5.2 How to Measure the Effective Mass

Cyclotron Resonance Technique

Centripetal force = Lorentzian force

$$\frac{m_n v^2}{r} = q v B$$

<u>q</u>Br

 m_n

 $\frac{v}{2\pi r} = \frac{qB}{2\pi m}$

- • f_{cr} is the Cyclotron resonance frequency.
- •It is independent of *v* and *r*.
- •Electrons strongly absorb microwaves of that frequency.
- •By measuring f_{cr} , m_n can be found.

Slide 1-15

1.7 Thermal Equilibrium and the Fermi Function 1.7.1 An Analogy for Thermal Equilibrium

• There is a certain probability for the electrons in the conduction band to occupy high-energy states under the agitation of thermal energy.

ppendix II. Probability of a State at E being Occupied

•There are g_1 states at E_1 , g_2 states at E_2 ... There are N electrons, which constantly shift among all the states but the average electron energy is fixed at 3kT/2.

•There are many ways to distribute N among n_1, n_2, n_3and satisfy the 3kT/2 condition.

•The equilibrium distribution is the distribution that maximizes the number of combinations of placing n_1 in g_1 slots, n_2 in g_2 slots....:

$$ni/gi = \frac{1}{1 + e^{(E - E_F)/kT}}$$

 $E_{\rm F}$ is a constant determined by the condition $\sum n_i = N$

1.7.2 Fermi Function–The Probability of an Energy State Being Occupied by an Electron

 $f(E) = \frac{1}{1 + e^{(E - E_f)/kT}}$ $E_f \text{ is called the } Fermi \text{ energy or the } Fermi \text{ level.}$

Boltzmann approximation:

$$f(E) \approx e^{-(E-E_f)/kT}$$

$$E-E_f >> kT$$

$$f(E) \approx 1 - e^{-(E_f - E)/kT} \quad E - E_f \ll -kT$$

Remember: there is only one Fermi-level in a system at equilibrium.

1.8 Electron and Hole Concentrations1.8.1 Derivation of n and p from D(E) and f(E)

Slide 1-19

Electron and Hole Concentrations

$$n = N_c e^{-(E_c - E_f)/kT}$$

$$N_c \equiv 2 \left[\frac{2\pi m_n kT}{h^2} \right]^{3/2}$$

$$p = N_v e^{-(E_f - E_v)/kT}$$

$$N_{v} \equiv 2 \left[\frac{2\pi m_{p} kT}{h^{2}} \right]^{3/2}$$

 N_c is called the *effective* density of states (of the conduction band).

 N_v is called the *effective* density of states of the valence band.

Remember: the closer E_f moves up to N_c , the larger *n* is; the closer E_f moves down to E_v , the larger *p* is. For Si, $N_c = 2.8 \cdot 10^{19} \text{ cm}^{-3}$ and $N_v = 1.04 \cdot 10^{19} \text{ cm}^{-3}$.

Slide 1-21

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 1-22

1.8.3 The *np* Product and the Intrinsic Carrier Concentration

Multiply
$$n = N_c e^{-(E_c - E_f)/kT}$$
 and $p = N_v e^{-(E_f - E_v)/kT}$

$$np = N_c N_v e^{-(E_c - E_v)/kT} = N_c N_v e^{-E_g/kT}$$

$$np = n_i^2$$

$$n_i = \sqrt{N_c N_v} e^{-E_g/2kT}$$

- In an intrinsic (undoped) semiconductor, $n = p = n_i$.
- n_i is the *intrinsic carrier concentration*, ~10¹⁰ cm⁻³ for Si.

EXAMPLE: Carrier Concentrations

Question: What is the hole concentration in an N-type semiconductor with 10^{15} cm⁻³ of donors?

Solution: $n = 10^{15} \text{ cm}^{-3}$.

$$p = \frac{n_i^2}{n} \approx \frac{10^{20} \text{ cm}^{-3}}{10^{15} \text{ cm}^{-3}} = 10^5 \text{ cm}^{-3}$$

After increasing T by 60 °C, n remains the same at 10^{15} cm⁻³ while p increases by about a factor of 2300 because $n_i^2 \propto e^{-E_g/kT}$.

Question: What is n if $p = 10^{17} \text{ cm}^{-3}$ in a P-type silicon wafer?

Solution:

$$n = \frac{n_i^2}{p} \approx \frac{10^{20} \text{ cm}^{-3}}{10^{17} \text{ cm}^{-3}} = 10^3 \text{ cm}^{-3}$$

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

1.9 General Theory of n and p

EXAMPLE: Complete ionization of the dopant atoms $N_d = 10^{17}$ cm⁻³. What fraction of the donors are not ionized?

Solution: First assume that all the donors are ionized.

1.9 General Theory of n and p
Charge neutrality:
$$n + N_a = p + N_d$$

 $np = n_i^2$

$$p = \frac{N_a - N_d}{2} + \left[\left(\frac{N_a - N_d}{2} \right)^2 + n_i^2 \right]^{1/2}$$
$$n = \frac{N_d - N_a}{2} + \left[\left(\frac{N_d - N_a}{2} \right)^2 + n_i^2 \right]^{1/2}$$

$$I. \ N_d - N_a \gg n_i \text{ (i.e., N-type)} \qquad n = N_d - N_a \\ p = n_i^2/n \\ If \ N_d \gg N_a \ , \quad n = N_d \quad \text{and} \quad p = n_i^2/N_d \\ II. \ N_a - N_d \gg n_i \text{ (i.e., P-type)} \qquad p = N_a - N_d \\ n = n_i^2/p \\ If \ N_a \gg N_d \ , \qquad p = N_a \quad \text{and} \quad n = n_i^2/N_a \end{cases}$$

Slide 1-27

EXAMPLE: Dopant Compensation

What are n and p in Si with (a) $N_d = 6 \times 10^{16} \text{ cm}^{-3}$ and $N_a = 2 \times 10^{16} \text{ cm}^{-3}$ and (b) additional 6×10^{16} cm⁻³ of N_a ? $n = 4 \times 10^{16} \text{ cm}^{-3}$ (a) $n = N_{d} - N_{d} = 4 \times 10^{16} \text{ cm}^{-3}$ $N_d = 6 \times 10^{16} \text{ cm}^{-3}$ $p = n_i^2 / n = 10^{20} / 4 \times 10^{16} = 2.5 \times 10^3 \text{ cm}^{-3}$ $N_a = 2 \times 10^{16} \text{ cm}^{-3}$ (b) $N_a = 2 \times 10^{16} + 6 \times 10^{16} = 8 \times 10^{16} \text{ cm}^{-3} > N_d$ $p = N_a - N_d = 8 \times 10^{16} - 6 \times 10^{16} = 2 \times 10^{16} \text{ cm}^{-3}$ + + + + + + $N_d = 6 \times 10^{16} \text{ cm}^{-3}$ $n = n_i^2 / p = 10^{20} / 2 \times 10^{16} = 5 \times 10^3 \text{ cm}^{-3}$ $N_a = 8 \times 10^{16} \text{ cm}^{-3}$ $p = 2 \times 10^{16} \text{ cm}^{-3}$

Infrared Detector Based on Freeze-out

•To image the black-body radiation emitted by tumors requires a photodetector that responds to hv's around 0.1 eV.

•In doped Si operating in the freeze-out mode, conduction electrons are created when the infrared photons provide the energy to ionized the donor atoms.

Slide 1-30

1.11 Chapter Summary

Energy band diagram. Acceptor. Donor. m_n, m_p . Fermi function. E_f .

$$n = N_c e^{-(E_c - E_f)/kT}$$

$$p = N_v e^{-(E_f - E_v)/kT}$$

$$n = N_d - N_a$$

$$p = N_a - N_d$$

$$np = n_i^2$$

Modern Semiconductor Devices for Integrated Circuits (C. Hu)