Chapter 1 Electrons and Holes in Semiconductors

1.1 Silicon Crystal Structure

- *Unit cell* of silicon crystal is cubic.
- *Each Si atom has 4 nearest neighbors***.**

Silicon Wafers and Crystal Planes

- The standard notation for crystal planes is based on the cubic unit cell.
- Silicon wafers are usually cut along the (100) plane with a flat or notch to help orient the wafer during IC fabrication.

electron, a *hole* is also created.

Dopants in Silicon

- As, a Group V element, introduces conduction electrons and creates *N-type silicon,* and is called a *donor.*
- B, a Group III element, introduces holes and creates *P-type silicon*, and is called an *acceptor*.
- Donors and acceptors are known as dopants. Dopant ionization energy ~50meV (very low).

Hydrogen:
$$
E_{ion} = \frac{m_0 q^4}{8\varepsilon_0^2 h^2} = 13.6 \text{ eV}
$$

GaAs, III-V Compound Semiconductors, and Their Dopants

- $: As: Ga: As:$ Ga: As: Ga
- \therefore Ga \therefore As \therefore Ga \therefore

- GaAs has the same crystal structure as Si.
- GaAs, GaP, GaN are III-V compound semiconductors, important for optoelectronics.
- Wich group of elements are candidates for donors? acceptors?

- Energy states of Si atom (a) expand into energy bands of Si crystal (b).
- The lower bands are filled and higher bands are empty in a semiconductor.
- The highest filled band is the *valence band.*
- The lowest empty band is the *conduction band* .

Measuring the Band Gap Energy by Light Absorption

• E_g can be determined from the minimum energy (hv) of photons that are absorbed by the semiconductor.

Bandgap energies of selected semiconductors

- Totally filled bands and totally empty bands do not allow current flow. (Just as there is no motion of liquid in a totally filled or totally empty bottle.) .
- Metal conduction band is half-filled.
- Semiconductors have lower *E g* 's than insulators and can be doped.

1.5 Electrons and Holes

- Both electrons and holes tend to seek their lowest energy positions.
- Electrons tend to fall in the energy band diagram.
- Holes float up like bubbles in water**.**

1.5.1 Effective Mass

The electron wave function is the solution of the three dimensional Schrodinger wave equation

$$
-\frac{\hbar^2}{2m_0}\nabla^2\psi + V(r)\,\psi = \psi
$$

The solution is of the form $exp(\pm \mathbf{k} \cdot \mathbf{r})$ $k =$ wave vector = 2π /electron wavelength For each k, there is a corresponding E.

acceleration =
$$
-\frac{q\epsilon}{\hbar^2} \frac{d^2 E}{dk^2} = \frac{F}{m}
$$

effective mass = $\frac{\hbar^2}{d^2 E/dk^2}$

Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 1-12

Conduction band

Valence band

1.5.1 Effective Mass

In an electric field, **E**, an electron or a hole accelerates.

Electron and hole effective masses

1.5.2 How to Measure the Effective Mass

Cyclotron Resonance Technique

n m

qB

Centripetal force = Lorentzian force

$$
\frac{m_n v^2}{r} = qvB
$$

mn

v

 $=\frac{v}{\epsilon}$ =

r

 $2\pi r$ 2π

 $\nu =$

cr

f

qBr

- *•f_{cr}* is the Cyclotron resonance frequency.
- •It is independent of *v* and *r*.
- •Electrons strongly absorb microwaves of that frequency.
- •By measuring f_{cr} , m_n can be found.

1.7 Thermal Equilibrium and the Fermi Function **1.7.1 An Analogy for Thermal Equilibrium**

• There is a certain probability for the electrons in the conduction band to occupy high-energy states under the agitation of thermal energy.

Appendix II. Probability of a State at E being Occupied

•There are g_1 states at E_1 , g_2 states at E_2 ... There are N electrons, which constantly shift among all the states but the average electron energy is fixed at 3kT/2.

•There are many ways to distribute N among n_1 , n_2 , n_3 ...and satisfy the 3kT/2 condition.

 \boldsymbol{E} $E_{\rm k}$

•The equilibrium distribution is the distribution that maximizes the number of combinations of placing n_1 in g_1 slots, n_2 in g_2 slots.... :

$$
\text{n}i/\text{g}i = \frac{1}{1 + \text{e}^{\left(E - E_{\text{F}}\right) / kT}}
$$

 E_F is a constant determined by the condition $\sum n_i = N$

1.7.2 Fermi Function–The Probability of an Energy State Being Occupied by an Electron

 $f(E) = \frac{1}{1 + (E - E_f)/E}$

=

1

Ef is called the *Fermi energy* or the *Fermi level.*

Boltzmann approximation:

$$
f(E) \approx e^{-(E-E_f)/kT}
$$

$$
E-E_f>>kT
$$

$$
f(E)\thickapprox 1-e^{-(E_f-E)/kT} \quad E-E_f<<-kT
$$

Remember: there is only one Fermi-level in a system at equilibrium.

1.8 Electron and Hole Concentrations **1.8.1 Derivation of** *n* **and** *p* **from** $D(E)$ **and** $f(E)$

Electron and Hole Concentrations

$$
n = N_c e^{-(E_c - E_f)/kT}
$$

$$
N_c \equiv 2 \left[\frac{2\pi m_n kT}{h^2} \right]^{3/2}
$$

$$
p = N_{\nu} e^{-(E_f - E_{\nu})/kT}
$$

$$
N_v \equiv 2 \left[\frac{2\pi m_p kT}{h^2} \right]^{3/2}
$$

Nc is called the *effective density of states (of the conduction band) .*

Nv is called the *effective density of states of the valence band.*

Remember: the closer E_f moves up to N_c , the larger *n* is; the closer E_f moves down to \mathbf{E}_{ν} , the larger p is. **For Si,** $N_c = 2.8 \degree 10^{19} \text{cm}^{-3}$ and $N_v = 1.04 \degree 10^{19} \text{cm}^{-3}$.

Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 1-22

1.8.3 The *np* **Product and the Intrinsic Carrier Concentration**

Multiply
$$
n = N_c e^{-(E_c - E_f)/kT}
$$
 and $p = N_v e^{-(E_f - E_v)/kT}$

$$
np = N_c N_v e^{-(E_c - E_v)/kT} = N_c N_v e^{-E_g/kT}
$$

$$
np = n_i^2
$$

$$
n_i = \sqrt{N_c N_v} e^{-E_g/2kT}
$$

- In an intrinsic (undoped) semiconductor, $n = p = n_i$.
- n_i is the *intrinsic carrier concentration*, $\sim 10^{10}$ cm⁻³ for Si.

EXAMPLE: Carrier Concentrations

Question: What is the hole concentration in an N-type semiconductor with 10¹⁵cm-3 of donors?

Solution: $n = 10^{15}$ *cm⁻³*.

$$
p = \frac{n_i^2}{n} \approx \frac{10^{20} \text{cm}^{-3}}{10^{15} \text{cm}^{-3}} = 10^5 \text{cm}^{-3}
$$

After increasing T by 60 °C, n remains the same at 10^{15} *cm⁻³ while p increases by about a factor of 2300 because* $n_i^2 \propto e^{-E_g/kT}$. *i* $n_{\scriptscriptstyle i}^{\,2} \propto e^{-E_{\scriptscriptstyle g}/2}$

Question: What is n if p = 10¹⁷cm-3 in a P-type silicon wafer?

Solution:

$$
n = \frac{n_i^2}{p} \approx \frac{10^{20} \text{cm}^{-3}}{10^{17} \text{cm}^{-3}} = 10^3 \text{cm}^{-3}
$$

1.9 General Theory of n and p

EXAMPLE: Complete ionization of the dopant atoms N^d = 10¹⁷ cm-3 . What fraction of the donors are not ionized?

Solution: First assume that all the donors are ionized.

1.9 General Theory of n and p
Change neutrality:
$$
n + N_a = p + N_d
$$

 $np = n_i^2$

$$
p = \frac{N_a - N_d}{2} + \left[\left(\frac{N_a - N_d}{2} \right)^2 + n_i^2 \right]^{1/2}
$$

$$
n = \frac{N_d - N_a}{2} + \left[\left(\frac{N_d - N_a}{2} \right)^2 + n_i^2 \right]^{1/2}
$$

1.9 General Theory of on n and p

\n**I.**
$$
N_d - N_a >> n_i
$$
 (i.e., N-type) $n = N_d - N_a$

\n $p = n_i^2 / n$

\nIf $N_d >> N_a$, $n = N_d$ and $p = n_i^2 / N_d$

\n**II.** $N_a - N_d >> n_i$ (i.e., P-type) $p = N_a - N_d$

\n $n = n_i^2 / p$

\nIf $N_a >> N_d$, $p = N_a$ and $n = n_i^2 / N_a$

EXAMPLE: Dopant Compensation

What are n and p in Si with (a) $N_d = 6 \times 10^{16}$ *cm⁻³ and* $N_a = 2 \times 10^{16}$ *cm⁻³ and* (*b*) *additional* 6×10^{16} *cm⁻³ of* N_a ? (a) $n = N_d - N_a = 4 \times 10^{16} \text{cm}^{-3}$ (b) $N_a = 2 \times 10^{16} + 6 \times 10^{16} = 8 \times 10^{16}$ cm⁻³ > N_d $p = n_i^2 / n = 10^{20} / 4 \times 10^{16} = 2.5 \times 10^3 \text{ cm}^{-3}$ $p = N_a - N_d = 8 \times 10^{16} - 6 \times 10^{16} = 2 \times 10^{16} \text{ cm}^{-3}$ $n = n_i^2 / p = 10^{20} / 2 \times 10^{16} = 5 \times 10^3 \text{ cm}^{-3}$ $+ + + + + +$ $\mathbf{r} \cdot \mathbf{a} = 2 \cdot \mathbf{b}$ N_d = 6×10¹⁶ cm⁻³ $N_a = 2 \times 10^{16}$ cm⁻³ $n = 4 \times 10^{16}$ cm⁻³ $+ + + + + +$. - - - - - -. N_d = 6×10¹⁶ cm⁻³ $N_a = 8 \times 10^{16}$ cm⁻³ $p = 2 \times 10^{16}$ cm⁻³

Infrared Detector Based on Freeze-out

•To image the black-body radiation emitted by tumors requires a photodetector that responds to $h\dot{v}$ around 0.1 eV.

•In doped Si operating in the freeze-out mode, conduction electrons are created when the infrared photons provide the energy to ionized the donor atoms.

1.11 Chapter Summary

Energy band diagram. Acceptor. Donor. m_n , m_p . Fermi function. E_f .

$$
n = N_c e^{-(E_c - E_f)/kT}
$$

$$
p = N_v e^{-(E_f - E_v)/kT}
$$

\n
$$
n = N_d - N_a
$$

\n
$$
p = N_a - N_d
$$

\n
$$
np = n_i^2
$$